bulletin of the chemical society of Japan, vol. 49 (8), 2325—2326 (1976)

Adduct-Formation Constants of Bis(3-trifluoroacetyl-d-camphorato)copper(II) with Lewis Bases

Tsunenobu Shigematsu, Masakazu Matsui, Yoshihiro Sasaki, and Matsujiro Sakurada Institute for Chemical Research, Kyoto University, Uji, Kyoto 611 (Received February 5, 1976)

Synopsis. The formation constants of the monoadducts of bis(3-trifluoroacetyl-d-camphorato)copper(II) with the Lewis bases, such as pyridine, α -picoline, β -picoline, γ -picoline, isopropylamine, and d- and d- α -methylbenzylamine, were determined spectrophotometrically.

Some metal complexes of β -diketones react further with heterocyclic bases, amines, and phosphorate esters, $^{1-4}$) and this adduct formation reaction plays an important role in the synergistic effect for solvent extraction. $^{5-9}$)

We investigated the adduct-formation between bis-(3-trifluoroacetyl-d-comphorate)copper(II) and heterocyclic bases and amines, including chiral amines, because this β -diketone is chiral and bulky, and determined spectrophotometrically the formation constants.

Experimental

3-Trifluoroacetyl-d-camphor (Hfacam) was synthesized from ethyl trifluoroacetate and d-camphor using a procedure similar to that described by Hammond. The copper complex, $Cu(facam)_2$, was prepared by adding an ethanol solution of the ligand to an aqueous solution of copper acetate at 60 °C. After cooling, the green crystals which precipitated were filtered off. This product was recrystallized from benzene and then sublimed three times in vacuo at 160 °C. (Found: C, 51.54; H, 5.14; F, 20.37%. Calcd for $C_{24}H_{28}-O_4F_6Cu$: C, 51.66; H, 5.06; F, 20.43%)

The absorption spectra in benzene at 25 $^{\circ}\mathrm{C}$ were recorded on a Hitachi 323 automatic recording spectrophotometer.

The formation constant K_1 of the mono-adduct was calculated by an equation similar to that of Rose-Drago.^{11,12)}

$$Cu(facam)_2 \, + \, B(Lewis \ base) \, \ensuremath{ \Longleftrightarrow \atop \hline{ \textit{K}_1 }} \, Cu(facam)_2 B \qquad (1)$$

$$\frac{C_{\rm A}C_{\rm B}}{A-A_0} = \left[C_{\rm A} + C_{\rm B} - \frac{A-A_0}{\varepsilon_3 - \varepsilon_1}\right] \frac{1}{\varepsilon_3 - \varepsilon_1} + \frac{1}{(\varepsilon_3 - \varepsilon_1)K_1}$$
(2)

where A and A_0 are the absorbances at a chosen wavelength in the presence and absence of B, and C_A and C_B are the initial concentrations of $\operatorname{Cu}(\operatorname{facam})_2$ and B, respectively. ε_1 and ε_3 are the extinction coefficients of $\operatorname{Cu}(\operatorname{facam})_2$ and $\operatorname{Cu}(\operatorname{facam})_2$ B, respectively. The least-squares method was applied to obtain the best K_1 and ε_3 values.

Results and Discussion

The spectrum of Cu(facam)₂ in benzene (cf. Fig. 1-(a)) exhibited two maxima at 574 and 680 nm; it resembles those of bis(acetylacetonato)copper(II), Cu(acac)₂, and bis(trifluoroacetylacetonato)copper(II), Cu(tfa)₂, with a square-planar symmetry.^{3,13} When the concentration ratio of pyridine to Cu(facam)₂ was in the range 0—0.6, two clear isosbestic points were present, indicating the formation of a mono-adduct. The isosbestic points vanished with increase of the pyridine con-

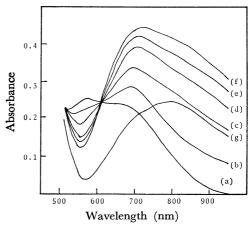


Fig. 1. Spectral change of $\text{Cu}(\text{facam})_2$ in benzene caused by the addition of pyridine. $C_A = 4.3 \times 10^{-3}$ M, ratio of C_B/C_A ; (a) 0.0; (b) 0.2; (c) 0.4; (d); 0.6; (e) 0.8; (f) 1.0; (g) pyridine.

centration, and a maximum appeared at 800 nm in the pyridine solution. Moreover, the analytical results of the crystals isolated from the pyridine solution agreed with the calculated values for $\text{Cu}(\text{facam})_2(\text{Py})_2$. Therefore, the spectrum in the pyridine solution may be due to $\text{Cu}(\text{facam})_2(\text{Py})_2$. Similar spectral changes of $\text{Cu}(\text{facam})_2$ caused by the addition of β -and γ -picolines and the analytical results of the crystals isolated from the β - and γ -picoline solutions proved the existence of the bis-adducts, $\text{Cu}(\text{facam})_2(\beta\text{-pic})_2$ and $\text{Cu}(\text{facam})_2(\gamma\text{-pic})_2$. With α -picoline, two isosbestic points were observed in the concentration-ratio range smaller than 1.0, suggesting a mono-adduct formation.

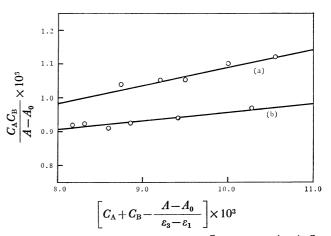


Fig. 2. Plots of $C_A C_B / (A - A_0)$ vs. $\left[C_A + C_B - \frac{A - A_0}{\varepsilon_3 - \varepsilon_1} \right]$ for α -methylbenzylamine at 700 nm. (a) l- α -Methylbenzylamine, (b) d- α -methylbenzylamine.

Table 1. Formation constants of mono-adducts between $\mathrm{Cu}(\mathrm{facam})_2$ and bases at $25\pm1~^{\circ}\mathrm{C}$

Base	$K_1 \ ({ m M}^{-1})$
Pyridine	31.1± 4.5
α-Picoline	83.3 ± 24.6
β -Picoline	30.9 ± 6.4
γ-Picoline	21.9 ± 5.6
Isopropylamine	26.4 ± 6.7
d - α -Methylbenzylamine	33.2 ± 12.9
l - α -Methylbenzylamine	84.3 ± 21.0

These isosbestic points vanished with the increase of the α -picoline concentration, and the spectrum in the α -picoline solution exhibited a maximum at 750 nm, with a shoulder at 850 nm. For isopropylamine, two isosbestic points at 520 and 610 nm were found in the concentration ratio range smaller than 1.0. For d-and l- α -methylbenzylamines, a dull isosbestic point at 600 nm was observed in the region smaller than 0.8, suggesting the formation of a mono-adduct.

An example of the calculation of formation constants is given in Fig. 2, and the K_1 values are summarized in Table 1. The solid lines are drawn on the basis of the calculated ε_3 and K_1 values. The agreement of the plots with the solid lines confirms the plausibility of the calculated ε_3 and K_1 values.

The comparison of the K_1 values reported in the literature^{1,2,14-16}) with the present data shows that the K_1 values, except that of α -picoline, increase in the order $\mathrm{Cu(ffa)_2} > \mathrm{Cu(facam)_2} > \mathrm{Cu(acac)_2}$. This suggests that the rigid and bulky 3-trifluoroacetyl-d-camphor hinders the formation of the mono-adduct with bases, but that the electron-withdrawing property of the $\mathrm{CF_3}$ -group is still effective. The K_1 value of α -picoline is smaller than those of the other pyridine

derivatives for $Cu(acac)_2$ and $Cu(tfa)_2$, whereas the relation is reversed for $Cu(facam)_2$. The K_1 values of d- and l- α -methylbenzylamine are remarkably different; this difference is difficult to explain, due to the lack of information on their mono-adducts.

References

- 1) D. P. Graddon and E. C. Watton, J. Inorg. Nucl. Chem., 21, 49 (1961).
- 2) D. P. Graddon and R. A. Schulz, Aust. J. Chem., 18. 1731 (1965).
- 3) C. H. Ke and N. C. Li, J. Inorg. Nucl. Chem., 31, 1383 1969).
- 4) C. H. Ke and N. C. Li, J. Inorg. Nucl. Chem., 28, 2255 (1966).
- 5) D. Dyrssen and M. Hemnichs, Acta Chem. Scand., 15, 47 (1961).
- 6) H. Irving and D. N. Edgington, J. Inorg. Nucl. Chem., **27**, 1359 (1965).
- 7) T. Shigematsu, M. Tabushi, M. Matsui, and T.
- Honjo, Bull. Chem. Soc. Jpn., 42, 976 (1969).
 8) T. Shigematsu, T. Honjo, and M. Matsui, and M. Tabushi, Bull. Chem. Soc. Jpn., 43, 793 (1970).
- 9) T. Shigematsu, T. Honjo, and M. Matsui, *Bull. Chem. Soc. Jpn.*, **43**, 796 (1970).
- 10) K. R. Kopecky, D. Nonhebel, G. Morris, and G. S. Hammond, J. Org. Chem., 27, 1036 (1962).
- 11) N. J. Rose and R. S. Drago, J. Am. Chem. Soc., 81, 6138 (1959).
- 12) R. S. Drago, J. Am. Chem. Soc., 95, 6645 (1973).
- 13) R. Belford, M. Calvin, and G. C. Belford, *J. Chem. Phys.*, **26**, 1165 (1957).
- 14) W. R. May and M. M. Jones, J. Inorg. Nucl. Chem., 25, 507 (1963).
- 15) W. R. Walker and N. C. Li, J. Inorg. Nucl. Chem., 27, 2255 (1965).
- 16) T. Shigematsu, M. Tabushi, M. Matsui, and M. Munakata, Bull. Chem. Soc. Jpn., 41, 2656 (1968).